Opportunities and challenges of converging technology and blended finance for REDD+ implementation
- 1National Institute of Green Technology, Republic of Korea
- 2Xiamen University, China
The importance of Reducing Emissions from Deforestation and Forest Degradation (REDD+) has been elevated within the new climate framework outlined by the Paris Agreement, placing a significant emphasis on encouraging nations to adopt and promote REDD+ strategies. The success of REDD+ is highly dependent on financial resources that aid in addressing and mitigating the primary causes of deforestation and forest degradation. Furthermore, REDD+ projects utilize technology to counter challenges such as land-use changes for agriculture, infrastructure development, illegal logging, fuelwood collection, and forest fires. This study investigates the status of REDD+ projects, which are aimed at combating global deforestation and climate change, supported by the Climate Technology Center Network (CTCN) and the Green Climate Fund (GCF), both of which are critical mechanisms under the United Nations Framework Convention on Climate Change (UNFCCC). We examined these projects through the lenses of technology convergence and finance blending. The analysis revealed that the CTCN and GCF predominantly support projects leveraging technology for forest disaster management. In addition, the agricultural sector demonstrated the highest degree of technology convergence. The findings indicate that a strategic approach for securing private funding involves integrating mitigation and adaptation efforts in projects. Furthermore, partnerships can facilitate the blending of financial strategies to mitigate risks. The study highlights the potential of technology convergence in enhancing the feasibility of scaling up REDD+ projects by promoting stakeholder engagement and catalyzing the private capital influx.
Keywords: Convergence technology, Forest and Wood Carbon, public-private financing, REDD+, CTCN, GCF
Received: 08 Feb 2023;
Accepted: 21 Aug 2023.
Copyright: © 2023 Jang, Kwak, Choi and Moon. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Dr. Eun-Kyung Jang, National Institute of Green Technology, Seoul, Republic of Korea